skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Iliopoulos, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Quantization of the noncommutative geometric spectral action has so far been performed on the final component form of the action where all traces over the Dirac matrices and symmetry algebra are carried out. In this work, in order to preserve the noncommutative geometric structure of the formalism, we derive the quantization rules for propagators and vertices in matrix form. We show that the results in the case of a product of a four-dimensional Euclidean manifold by a finite space, could be cast in the form of that of a Yang–Mills theory. We illustrate the procedure for the toy electroweak model. 
    more » « less